A.I, Data and Software Engineering

Tagdimension

The intuition of Principal Component Analysis

Petamind A.I

As PCA and linear autoencoder have a close relation, this post introduces again PCA as a powerful dimension reduction tool while skipping many mathematical proofs. PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables (entities each of which takes on various numerical values) into a set of values of linearly...

deep learning: Linear Autoencoder with Keras

autoencoder schema

This post introduces using linear autoencoder for dimensionality reduction using TensorFlow and Keras. What is a linear autoencoder An autoencoder is a type of artificial neural network used to learn efficient data codings in an unsupervised manner. The aim of an autoencoder is to learn a representation (encoding) for a set of data, typically for dimensionality reduction, by training the network...

Dimension, Dimension, Dimension – Reshape your data

reshape your data

The most basic yet important thing when working with data array is its dimensions. This article will cover several data shapes and reshaping techniques. Why need reshaping data Imagine that you are starving and suddenly given a piece of delicious food. You may try to put it all in your mouth (Fig 1a) and find out it cannot help your hunger. So, you decided to arrange your food so that it not only...

A.I, Data and Software Engineering

PetaMinds focuses on developing the coolest topics in data science, A.I, and programming, and make them so digestible for everyone to learn and create amazing applications in a short time.

Pin It on Pinterest